Chapter 2 Section 1.7 : Directional Derivatives

2.7 Directional Derivatives

To this point we've only locked at the two partial derivatives f; (r.y) and f, (x.y). Recall that
these derivatives represent the rate of change of f as we vary x (holding v fixed) and as we vary
y (holding r fixed) respectively. We now need to discuss how to find the rate of change of f if we
allow both r and y to change simultaneously. The problem here is that there are many ways to
allow both = and y to change. For instance, one could be changing faster than the other and then
there is also the issue of whether or not each is increasing or decreasing. So, before we get into
finding the rate of change we need to get a couple of preliminary ideas taken care of first. The main
idea that we need to look at is just how are we going to define the changing of = andfor y.

Let's start off by supposing that we wanted the rate of change of [ at a particular point, say (r,. ).
Let's also suppose that both r and y are increasing and that, in this case, r is increasing twice
as fast as y is increasing. So, as y increases one unit of measure ¢ will increase two units of
MEeasure.

To help us see how we're going to define this change let’s suppose that a particle is sitting at (xq. )
and the particle will move in the direction given by the changing r and y. Therefore, the particle
will move off in a direction of increasing r and y and the » coordinate of the point will increase
twice as fast as the y coordinate. Now that we're thinking of this changing » and y as a direction
of movement we cam get a way of defining the change. We know from Calculus |l that vectors
can be used to define a direction and so the particle, at this point, can be said to be moving in the
direction,

f={2,1)

Since this vector can be used to define how a particle at a point is changing we can also use it
to describe how r andfor y is changing at a point. For our example we will say that we want the
rate of change of f in the direction of & = (2.1). In this way we will know that = is increasing
twice as fast as y is. There ig still a small problem with this however. There are many vectors that
point in the same direction. For instance, all of the following wectors point in the same direction as

= {2 1).
= I' ] =5 .'!--'. = E ] >
T=\z1 = {6, 3) F= ﬁx—i

We need a way to consistently find the rate of change of a function in a given direction. We will
do this by insisting that the vector that defines the direction of change be a unit vector. Recall that
a unit vector is a vector with length, or magnitude, of 1. This means that for the example that we
started off thinking about we would want to use

since this is the unit vector that points in the direction of change.

For reference purposes recall that the magnitude or length of the vector & = (a.b.c) is given
by,
7 = va? + 82 + 2
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Chapter 2 Section 2.7 : Directional Derivatives

For two dimensional vectors we drop the « from the formula.

Sometimes we will give the direction of changing r and y as an angle. For instance, we may say
that we want the rate of change of f in the direction of # = 3. The unit vector that points in this
direction is given by,

i = (cos(fl).sin(f))

Okay, now that we know how to define the direction of changing = and y its time to start talking
about finding the rate of change of f in this direction. Let's start off with the official definition.

The rate of change of f (x. y) in the direction of the unit vector ii = {a.b) is called the direc-
tional derivative and is denoted by D f (r.y). The definition of the directional derivative

is,
f(x+ah.y+bh)— f(z.y)
h

Dqaf (z.y) = lim

So, the definition of the directional derivative is very similar to the definition of partial derivatives.
However, in practice this can be a very difficult limit to compute so we need an easier way of
taking directional derivatives. It's actually fairly simple to derive an equivalent formula for taking
directional derivatives.

To see how we can do this let's define a new function of a single variable,
9(z) = [ (xg + az,yy + bz)

where z,, i, a, and b are some fixed numbers. Note that this really is a function of a single variable
now since z is the only letter that is not representing a fixed number.

Then by the definition of the derivative for functions of a single variable we have,

J (2) = '!im'g(z + h’: -9(z)

and the derivative at = = ( is given by,

e g(h)—g(0)
7o) =

If we now substitute in for g (z) we get,

4 (0) = §m glh)—g(0) o [ (xg + ah,yy + bh) — f (2.

W)
h—0 h h—) I = Daf (xg. 1)

So, it looks like we have the following relationship.

g’ (0) = Daf (z4. 1) (13.2)
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Chapter 2 Section 1.7 : Directional Derivatives

Mow, let's look at this from another perspective. Let's rewrite g z) as follows,

glz) = flz,y) where r=xy+azand y = + bz

We can now use the chain rule from the previous section to compute,

i dg df dx ﬂrf_g.r

glz)=—7=2—+

z  fArdz ' fydz = fri(z.yja+ fyl(z.u)b

So, from the chain rule we get the following relationship.

glz)=felry)a+ fy(z.u)b (13.3)

If we now take = = 0 we will get that r = x, and y = y, (from how we defined » and y above) and
plug these into Equation 13.3 we get,

gi{0) = f:':rll'yll]"_fy (Zg: 4y} b (13.4)
Mow, simply equate Equation 13.2 and Equation 13.4 to get that,

Def (zo.w) = ¢"(0) = fr (zo. po)a + Fylro.mo) b

If we now go back to allowing r and y to be any number we get the following formula for computing
directional derivatives.

2D Directional Derivative Formula

Dgf (x.y)= frlz.p)a+ fy(r.y)b

This is much simpler than the limit definition. Also note that this definition assumed that we were
waorking with functions of two variables. There are similar formulas that can be derived by the same
type of argument for functions with more than two variables. For instance, the directicnal derivative
of f {r.y. z) in the direction of the unit vector @ = (a, b. &) is given by,

3D Directional Derivative Formula

Dyf(z.¥.2) = fz(r.p.z)a+ fy (z.9.2) b+ fr (z.0. 2) e

Let's work a couple of examples.
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Chapter 2 Section 2.7 : Directional Derivatives

(@ B2 74 3

Find each of the directional derivatives.

o

V-l =

(@) Dgf (2.0)where f (r.y) = re*¥ + y and ii is the unit vector in the direction of § =

(b) Dyf (x.y.z) where f (r.y.z) = rz + y*z* — zyz in the direction of ¥ = (—1.0. 3).

Solution
2,
(@) Dgf (2.0)where f (z.y) = re™ + y and i is the unit vector in the direction of § = ?

We'll first find Dy f (r.y) and then use this a formula for finding Dy f (2.0). The unit
vector giving the direction is,

N < (2n) (21’)> < 1\,6>
u=(Cos| — |.sin| — =( —=,—
3 3 2" 2
So, the directional derivative is,
1 3 ¢
Dqf (z.y) = (—;) (€™ +xye™) + (‘-’:“—‘) («'e™ +1)

Now, plugging in the point in question gives,

1 3\ ,. 5v3 -1
Dqf (2,0) = (—5)(1) + (‘f__))(;,, =25

(b) Dyf (x.y.z) where f (r.y.z) = rz + y*z* — zyz in the direction of ¥ = (—1.0. 3).

In this case let’s first check to see if the direction vector is a unit vector or not and if it
isn't convert it into one. To do this all we need to do is compute its magnitude.

—

I8 =vVI+0+9=V10#1

So, it's not a unit vector. Recall that we can convert any vector into a unit vector that
points in the same direction by dividing the vector by its magnitude. So, the unit vector
that we need is,

il = 2 (=1.0.3) = <—L.n.i>
Vio ‘ VIO V1D

The directional derivative is then,

Def (z.y.2) = (—ﬁ) (2xz — yz) +(0) (3p°z* —x2) + (\7;_;) (2 + 2z — 1p)

= ﬁ (322 + 6y’z — 3y — 222 + yz2)
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Chapter 2 Section 1.7 : Directional Derivatives

There is another form of the formula that we used to get the directional derivative that is a little
nicer and somewhat more compact. It is also a much more general formula that will encompass
both of the formulas above.

Let's start with the second one and notice that we can write it as follows,

Dyf(z.w.2) = fr(r.v.2)a + fy(z.0.2) b+ fz (.5, 2) ¢
= (fz. fy. Fo) - {a. b, €]

In other words, we can write the directional derivative as a dot product and notice that the second
vector is nothing more than the unit vector @ that gives the direction of change. Also, if we had
used the version for functions of two variables the third component wouldn't be there, but other
than that the formula would be the same.

Mow let's give a name and notation to the first vector in the dot product since this vector will show
up fairly regulary throughout this course (and in other courses). The gradient of [ or gradient
vector of [ is defined to be,

Vi= l:fi-f_l,l'fz:: or Vi= if.i";-fg-.‘-
Or, if we want to use the standard basis vectors the gradient is,
Tf=f:;+.urg'j+f1§ ar T.f-:fJ;‘l'.-Fj.J

The definition is only shown for functions of two or three variables, however there is a natural
extension to functions of any number of variables that we'd like.

With the definition of the gradient we can now say that the directional derivative iz given by,

Directional Derivative Gradient Formula
Def =Vf il

where we will no longer show the variable and use this formula for any number of variables. Note
as well that we will sometimes use the following notation,

Def (F)=Vf-if

where ¥ = (r.y.z) Of ¥ = (r.y) as needed. This notation will be used when we want to note
the variables in some way, but don't really want to restrict ourselves to a particular number of
variables. In other words, © will be used to represent as many variables as we need in the formula
and we will most often use this notation when we are already using vectors or vector notation in
the problemformula.

Let's work a couple of examples using this formula of the directicnal derivative.
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(@ Example 75 3

Find each of the directional derivatives.

(@) Dgf (%) for f (x.y) = xcos(y) in the direction of 7 = (2.1).

(b) Dgf () for f (xr.y.z) = sin(yz) + In (x?) at (1. 1. =) in the direction of # = (1,1, -1).

Solution
(@) Dgf (7) for f (x.y) = xcos(y) in the direction of & = (2.1).
Let's first compute the gradient for this function.

Vf = {cos(y).—zsin(y))

Also, as we saw earlier in this section the unit vector for this direction is,

< 2
u= — =1
VD Vi

The directional derivative is then,

=

LS

/ : \ I
Dgf (¥) = (cos (y) . —xsin(y)) - <_ & —=>

v Vv

<

1 .
= —,.(2@8(”' —xSsiniy))
Vi

<

(b) Dgf (#) for f (r.y.z) = sin(yz) +In(z*) at (1.1, ) in the direction of # = (1,1, —1).
In this case are asking for the directional derivative at a particular point. To do this we
will first compute the gradient, evaluate it at the point in question and then do the dot
product. So, let's get the gradient.

2
Vf(r.y.z)= <§.zcos(uz).yc08(yz)>

9
Vil l.7) = <{.ncosm.oos(m> = (2, —x,—1)

Next, we need the unit vector for the direction,

It ’—5 5] < 1 1 1 >
Ul = V< f =:{ =—ym, == e
’ V3 V3 V3

I— —
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Chapter 2 Section 2.7 : Directional Derivatives

Finally, the directional derivative at the point in question is,

S | 1
Def (1,1,7) = (2. —7. —1) <————..>
‘ ) V3V /3
1
=—(2-7+1
V,5( )
3—m

Before proceeding let's note that the first order partial derivatives that we were looking at in the ma-
jority of the section can be thought of as special cases of the directional derivatives. For instance,
fr can be thought of as the directional derivative of f in the direction of ii = (1.0) or i = (1.0.0),
depending on the number of variables that we're working with. The same can be done for f, and

f:

We will close out this section with a couple of nice facts about the gradient vector. The first tells
us how to determine the maximum rate of change of a function at a point and the direction that we
need to move in order to achieve that maximum rate of change.

Maximum Rate of Change

The maximum value of Dy f (') (and hence then the maximum rate of change of the function
f (7)) is given by ||V f (#)]| and will occur in the direction given by V f (7).

N b

This is a really simple proof. First, if we start with the dot product form D,/ (¥) and use a
nice fact about dot products as well as the fact that 7 is a unit vector we get,

Dgf =Vf-i=||Vf| || cos(#) = ||V S| cos(d)

where ¢ is the angle between the gradient and .

Now the largest possible value of cos(#) is 1 which occurs at# = (). Therefore the maximum

value of D f () is ||V f (¥)|| Also, the maximum value occurs when the angle between the

gradient and 7 is zero, or in other words when i is pointing in the same direction as the
gradient, Vf (7).

& o . v

EE—— —

Let's take a quick look at an example.
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[ Exwmple 765 3

Suppose that the height of a hill above sea level is given by z = 1000 — 0.01x — 0.025°. If
you are at the point (4. 100) in what direction is the elevation changing fastest? What is the
maximum rate of change of the elevation at this point?

Solution

First, you will hopefully recall from the Quadric Surfaces section that this is an elliptic paraboloid
that opens downward. So even though most hills arent this symmetrical it will at least be
vaguely hill shaped and so the question makes at least a little sense.

Now on to the problem. There are a couple of questions to answer here, but using the
theorem makes answering them very simple. We'll first need the gradient vector.

V() = (-0.02z. —0.04y)

The maximum rate of change of the elevation will then occur in the direction of

Vi (60.100) = (=12, —4)

The maximum rate of change of the elevation at this point is,

91 (60.100)] = \/(—1.2) + (—=4)* = VIT.H = 4.176

Before leaving this example let's note that we're at the point (60. 100) and the direction of
greatest rate of change of the elevation at this point is given by the vector (—1.2, —4). Since
both of the components are negative it looks like the direction of maximum rate of change

‘ points up the hill towards the center rather than away from the hill. '

The second fact about the gradient vector that we need to give in this section will be very convenient
in some later sections.

The gradient vector V f (xy,. y,) is orthogonal (or perpendicular) to the level curve
f(x.y) = k at the point (.11 ). Likewise, the gradient vector V f (zy. w. zq) is orthogonal
to the level surface f (r. y.z) = k at the point (zq. . 20).
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oo | A

We're going to do the proof for the R case. The proof for the R* case is identical. We'll also
need some notation out of the way to make life easier for us let's let S be the level surface
given by f(r.y.z) = kand let P = (x,. u,. ;). Note as well that /” will be on S.

Now, let C' be any curve on S that contains P. Let 7(f) = (r (t).y(f),z(t)) be the vector
equation for (" and suppose that ¢, be the value of f such that 7 (t,) = (z,. . z,). In other
words, f, be the value of t that gives P.

Because (' lies on S we know that points on " must satisfy the equation for S. Or,

flx(t).p(t).z(t) =k

Next, let's use the Chain Rule on this to get,
dfdz  Ofdy  8fdz

drdt = oydt  Ozdt
Notice that Vf = (f;. f,. f:) and 7' (t) = («" () .4/ (t) .2’ (t)) so this becomes,
Vf-7({t)=0
At,f:lomis,
Vi (xo0.40-20) - 7' (tg) =0

This then tells us that the gradient vector at P, V[ (4. . 2 ), is orthogonal to the tangent
vector, 7' (,), to any curve (' that passes through P and on the surface S and so must

also be orthogonal to the surface S.

As we will be seeing in later sections we are often going to be needing vectors that are orthogonal
to a surface or curve and using this fact we will know that all we need to do is compute a gradient
vector and we will get the orthogonal vector that we need. We will see the first application of this
in the next chapter.
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In this section we'll take a look at a couple of applications of partial derivatives. The applications
here are either very similar to applications we saw for derivatives of single variable functions or
extensions of those applications.

For example we will be looking at the tangent plane to a surface rather than tangent lines to curves
as we did with single variable functions.

In addition we be finding relative and absolute extrema of multi-variable functions. The difference
in this chapter compared to the last time we saw these applications is that they will often involve a
lot more work. Because of the increased difficulty of the problems we'll be restricting ourselves to
finding the relative and absolute extrema of functions of two variables only.

We will also be looking at Lagrange Multipliers. This is a method that will allow us to optimize
a function that is subject to some constraint. That is to say optimizing a function of two or three
variables where the variables must also satisfy some constraint (usually in the form on an equation
involving the variables).
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2.8 Tangent Planes and Linear Approximations

Earlier we saw how the two partial derivatives f. and f, can be thought of as the slopes of traces.
We want to extend this idea out a litfle in this section. The graph of a function z = f(r.y) is
a surface in E* (three dimensional space) and 50 we can now start thinking of the plane that is
“tangent” to the surface as a point.

Let's start out with a point (=, w) and let's let 1 represent the trace to f(x, y) for the plane y =
(ie. allowing r to vary with p held fixed) and we'll let O represent the trace to f (. y) for the plane
r = 1, (Le. allowing y to vary with r held fixed). Mow, we know that f. (r,.y,) is the slope of the
tangent line to the trace ) and f, (x,.u,) is the slope of the tangent line to the trace . So, let
L, be the tangent line to the trace ) and let L, be the tangent line to the trace .

The tangent plane will then be the plane that contains the two lines L, and L,. Geometrically this
plane will serve the same purpose that a tangent line did in Calculus |. A tangent line to a curve
was a line that just touched the curve at that point and was “parallel” to the curve at the point in
question. Well tangent planes to a surface are planes that just touch the surface at the point and
are “parallel” to the surface at the point. Mote that this gives us a point that iz on the plane. Since
the tangent plane and the surface touch at (x;,. y,) the following point will be on both the surface
and the plane.
{Ta: M- Z0) = (o Boe S (T0- o))

What we need to do now is determine the equation of the tangent plane. We know that the general
equation of a plane is given by,

a(r—rg) + f.ll:i.l —wm)te(z—x)=10

where |z, w,, 7;) i5 a point that is on the plane, which we have. Let's rewrite this a little. We'll
move the - terms and y terms to the other side and divide both sides by . Doing this gives,

iT b
z_z”=—;|:1—J'"l—:HJ_Uul

Mow, let's remame the constants to simplify up the notation a littbe. Let's rename them as fol-
lows,

With this renaming the equation of the tangent plane becomes,
I—Iy= -'4-':! — o)+ B':-U - -Ull]
and we need to determine values for A and B.

Let's first think about what happens if we hold y fixed, ie. if we assume that y = w. In this case
the equation of the tangent plane becomes,

z—zp=A[x —xp)
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This is the equation of a line and this line must be tangent to the surface at (. y,) (since it's part
of the tangent plane). In addition, this line assumes that y = y, (Le. fixed) and A is the slope of this
line. But if we think about it this is exactly what the tangent to (") is, a line tangent to the surface
at (xy. yy) assuming that y = »,. In other words,

z—z5=A(xr—xq)

is the equation for L, and we know that the slope of L, is given by f: (xy. ). Therefore, we have
the following,
A= l.r(-"u-ynj

If we hold r fixed at » = 2, the equation of the tangent plane becomes,

Z_zﬂ:B(.y_Uu)

However, by a similar argument to the one above we can see that this is nothing more than the
equation for L, and that it's slope is B or f, (x;,. ;). So,

B = fy(%o.m)
The equation of the tangent plane to the surface given by z = f (r.y) at (z,,. y,) is then,
z—zg = fr(Tg. ) (x — 7)) + Sy (xp. 40) (v — )
Also, if we use the fact that z, = f (. 1) we can rewrite the equation of the tangent plane as,

z— f(zg.10) = fx (x9-1p) (x — 7) + jy‘fn-lln) (v — w)
z = f(xg.4) + fx (xo.00) (x — x9) + fy(xo. ) (¥ — )

We will see an easier derivation of this formula (actually a more general formula) in the next section
so if you didn't quite follow this argument hold off until then to see a better derivation.

(@ Exameie 77 3

Find the equation of the tangent plane to z = In(2r + y) at (-1.3).

Solution
There really isn't too much to do here other than taking a couple of derivatives and doing

R — T
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some quick evaluations.
flr.y)=In(2r +y) z=f(-13)=In(1)=0
l,(r.u]:zr{” fz(-1.3)=2
fy(!.1/]=2tiu fy(-1.3)=1
The equation of the plane is then,
z—0=2(r+ 1)+ (1) (g —3)

! =2r4y—1 )

One nice use of tangent planes is they give us a way to approximate a surface near a point. As long
as we are near to the point (x,,. y,) then the tangent plane should nearly approximate the function
at that point. Because of this we define the linear approximation to be,

L(.r.y) = /(-’u-yu] + /r (T, Uo) | — ) + fg (To-Yo) (¥ — W)
and as long as we are “near” (xy. i) then we should have that,

flx.y) = L(x.y) = f(xo.m) + fz (z0.m0) (x — x0) + fy (0. %0) (¥ — wo)

Example 78 N

Find the linear approximation to z = 3 + {7 s !,i at (—4.3).

Solution
So, we're really asking for the tangent plane so let’s find that.

2

f(:.y|=:j’:—;+% f(-4.3)=3+1+1=5
J B
1
f,u.u|=§ (4.3 =3
2 9
fylz.y) = — fy(—4.3) ==

9 :

.-

The tangent plane, or linear approximation, is then,
1 2
Lzy=5-3E+9)+3W-3)
For reference purposes here is a sketch of the surface and the tangent plane/linear approx-

imation.
——— —
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2.9 Gradient Vector, Tangent Planes and Normal Lines

In this section we want to revisit tangent planes only this time we'll look at them in light of the
gradient vector. In the process we will also take a look at a normal fine to a surface.

Let's first recall the equation of a plane that contains the point (. y,. z,) with normal vector ii =
{a. b, ¢) is given by,
a(r—xo)+b(y—wm)+el(z—2)=0

When we introduced the gradient vector in the section on directional derivatives we gave the fol-
lowing fact.

The gradient vector V f (z,,. y,) is orthogonal (or perpendicular) to the level curve
f(z.y) = k at the point (z,,, 1, ). Likewise, the gradient vector V f (z;. 1. z,) is orthogonal
to the level surface f (r.y.z) = k at the point (zq. . 20)-

Actually, all we need here is the last part of this fact. This says that the gradient vector is always
orthogonal, or normal, to the surface at a point.

Also recall that the gradient vector is,
Vf={fr.fy. f3)
So, the tangent plane to the surface given by f (2. y.z) = k at (. 4,. 7,) has the equation,
Jz (7. Y0 20) (x — ) + Sy (x- 0o 20) (0 — W) + Jz (20 Uo. 20) (2 — 2) = 0
This is a much more general form of the equation of a tangent plane than the one that we derived
in the previous section.

Note however, that we can also get the equation from the previous section using this more general
formula. To see this let’s start with the equation z = f (r. y) and we want to find the tangent plane
to the surface given by z = f (2. y) at the point (x,. u,. z,) where z, = f (r,.4,). In order to use
the formula above we need to have all the variables on one side. This is easy enough to do. All
we need to do is subtract a = from both sides to get,

flr.y)—z=0

Now, if we define a new function
F(z.y.z)= flr.y) -z

we can see that the surface given by z = f (. y) is identical to the surface given by F (r.y.z) =0
and this new equivalent equation is in the correct form for the equation of the tangent plane that
we derived in this section.
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S0, the first thing that we need to do is find the gradient vector for F.

VF = (Fp. Fy Fu) = (fe fyo—1)
Notice that

Fo= o (flaw)-2) =
-

fr
i
iz

The equation of the tangent plane is then,

_lrz (xo. o) [z — xg) + fy':fll-k'll:l W —m) —(z—za)=10

Or, upon solving for =, we get,
z = f(zg.wp) + fr(Tp-2p) (T —xp) + fy [z g ) (¥ — W)

which is identical to the equaticn that we derived in the previous section.

We can get another nice piece of information out of the gradient vector as well. We might on
occasion want a line that is orthogonal to a surface at a point, sometimes called the normal line.
This is easy enough to get if we recall that the equation of a line only requires that we have a point
and a parallel vector. Since we want a line that is at the point (. y,. z,) we know that this point
must also be on the line and we know that ¥ f (xq. y. 20) is a vector that is normal to the surface
and hence will be parallel to the line. Therefore, the equation of the normal line is,

Ft) = (zg M.z} + W F {200 - Z0)

3T |

Find the tangent plane and normal line to = + y* + z* = 50 at the point (1, —2.5).

Solution
For this case the function that we're going to be working with is,
Fiz.y.z)=x2*+p* +

and note that we don't have to have a zero on one side of the equal sign. All that we needisa
constant. To finish this problem out we simply need the gradient evaluated at the point.

VF = (2, 3y, 2z}
VF(l1,-2.5)={2,—4.10}

—— —
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The tangent plane is then,

Hr-1)-4(p+2)+10(z=58) =0

The normal line is,

A FE) = (1, —2,5) £ £{2. 4,10} = {1 + 2, —2 — 4¢.5 4+ 106} )
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